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1. Introduction 

Cardiovascular disease (CVD) represents the most 

significant public health challenge of the 21st century, 

remaining the leading cause of morbidity and mortality 

worldwide. The global burden of CVD is immense, with 

an estimated 17.9 million deaths annually, a figure 

that is projected to rise. The pathophysiology of CVD 

is complex and multifactorial, involving an intricate 
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A B S T R A C T  

Conventional models for stratifying cardiovascular disease (CVD) risk have 
limitations. The integration of static genomic data and dynamic digital 
biomarkers from wearable technology holds theoretical promise, but its 
potential quantitative impact remains poorly defined. This study aimed to 
develop and validate an in-silico framework to quantify the theoretical 

maximum predictive gain of an integrated risk model under idealized 
conditions. We developed a sophisticated data generating process (DGP) to 
create a synthetic dataset of 5,000 individuals. The DGP incorporated 
demographic and clinical variables with distributions and correlations based 

on epidemiological literature. It included a simulated polygenic risk score 
(PRS) for coronary artery disease and advanced digital biomarkers derived 
from wireless health monitoring data, such as heart rate variability (HRV) 
and time in moderate-to-vigorous physical activity (MVPA). The 10-year risk 

of Major Adverse Cardiovascular Events (MACE) was generated via a defined 
logistic function incorporating these variables plus stochastic noise. We 
compared the performance of the ACC/AHA Pooled Cohort Equations (PCE) 
against several machine learning models (Logistic Regression, Random 

Forest, XGBoost) using the area under the receiver operating characteristic 
curve (AUC-ROC), precision, recall, and F1-score. In this simulated 
environment, the integrated XGBoost model achieved near-optimal 

predictive performance with an AUC-ROC of 0.92 (95% CI, 0.90-0.94), 
significantly outperforming the benchmark PCE model (AUC-ROC 0.76; 95% 
CI, 0.73-0.79; p < 0.001). The inclusion of the PRS and, most notably, 
dynamic digital biomarkers like HRV, provided substantial incremental 

improvements in risk discrimination over traditional factors alone. In 
conclusion, this in-silico study demonstrates the substantial theoretical 

potential of integrating genomic and advanced digital biomarker data 
through machine learning for CVD risk stratification. While these idealized 

results are not directly generalizable, they provide a quantitative rationale 
for pursuing real-world data collection and validation studies. This work 
establishes a methodological proof-of-concept and highlights the potential 
for a paradigm shift toward more dynamic and personalized cardiovascular 

risk assessment. 
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interplay of genetic predisposition and environmental 

factors, including lifestyle and diet.1-3 Despite 

considerable advances in our understanding of CVD 

and the development of effective preventative 

strategies, the ability to accurately identify individuals 

at high risk remains a critical challenge in clinical 

cardiology. 

For decades, cardiovascular risk assessment has 

been dominated by traditional risk stratification 

models, such as the Framingham Risk Score (FRS) and 

the ACC/AHA Pooled Cohort Equations (PCE). These 

models, based on a limited set of conventional risk 

factors like age, cholesterol levels, and blood pressure, 

have been instrumental in guiding preventative 

therapies. However, they possess inherent 

limitations.4,5 They provide a static, point-in-time risk 

estimate that does not account for the dynamic, 

longitudinal changes in an individual's physiology and 

behavior. Consequently, a significant proportion of 

cardiovascular events occur in individuals classified 

as being at low or intermediate risk by these models, 

highlighting a pressing need for more accurate and 

comprehensive risk stratification tools.6 

The advent of high-throughput genomic 

technologies has ushered in a new era of "precision 

medicine". Genome-wide association studies (GWAS) 

have successfully identified hundreds of genetic 

variants associated with CVD risk. This information 

can be aggregated into a polygenic risk score (PRS), a 

quantitative metric of an individual's lifelong genetic 

predisposition to diseases like coronary artery disease 

(CAD). Unlike traditional risk factors, an individual's 

PRS is immutable and can be assessed early in life, 

offering a unique opportunity for early risk 

identification.7-9 

In parallel, the proliferation of wireless health 

monitoring devices (smartwatches, fitness trackers) 

has enabled the continuous, real-time collection of 

physiological and behavioral data. These devices 

capture a rich stream of digital biomarkers, including 

heart rate, heart rate variability (HRV), physical 

activity patterns, and sleep quality. This high-

frequency data provides a granular, dynamic view of 

an individual's health state, capturing fluctuations 

that are invisible to the episodic measurements taken 

in a clinical setting.10-11 

The convergence of static genomics and dynamic 

digital health data presents an unprecedented 

opportunity to create a holistic, personalized approach 

to CVD risk stratification. However, the sheer volume 

and complexity of these multi-modal data streams 

pose a significant analytical challenge that traditional 

statistical methods are ill-equipped to handle. 

Machine learning, a subfield of artificial intelligence, is 

exceptionally well-suited to this task, capable of 

identifying complex, non-linear patterns within large, 

high-dimensional datasets. While the conceptual 

appeal of this integration is strong, the theoretical 

limits and potential magnitude of its predictive power 

have not been systematically explored in a controlled 

environment. 

The aim of this in-silico study was to develop a 

rigorous data simulation framework to quantify the 

theoretical maximum predictive gain of integrating 

genomic and advanced digital biomarker data for CVD 

risk stratification. We sought to evaluate, under 

idealized conditions, how advanced machine learning 

models perform compared to established clinical risk 

calculators when provided with these rich, multi-

modal data sources. The novelty of this work lies in its 

methodological approach. Rather than relying on 

often-confounded and incomplete real-world data, we 

created a controlled, transparent, and reproducible 

simulated environment. This allowed us to 

systematically dissect the independent and synergistic 

contributions of conventional risk factors, static 

genomic risk (PRS), and dynamic digital biomarkers 

(HRV). To our knowledge, this is the first study to use 

a sophisticated simulation framework to benchmark 

the performance of machine learning algorithms 

against the ACC/AHA Pooled Cohort Equations in 

such a data-rich scenario. This study serves as a 

crucial proof-of-concept, providing a quantitative 

rationale to guide the design of future, more complex 

real-world validation studies. 
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2. Methods 

This study was designed as an in-silico simulation 

to create a synthetic dataset modeling a population of 

5,000 individuals. The objective was to generate a 

realistic, yet controlled, dataset to evaluate the 

performance of various risk prediction models without 

the confounding, noise, and missingness inherent in 

real-world data. All data generation and analysis 

scripts were developed in Python (version 3.9). No 

human subjects were involved, and therefore, 

institutional review board approval was not required. 

A multi-step Data Generating Process (DGP) was 

designed to create an in-silico cohort with plausible 

characteristics and inter-variable correlations. 

Demographic and clinical variables were generated 

based on parameters derived from epidemiological 

literature on cardiovascular risk factors. Correlated 

variables were generated using a multivariate normal 

distribution: (1) Age: Uniformly distributed between 40 

and 75 years.; (2) Sex: Binary variable (male/female), 

with a 50% probability for each; (3) Systolic Blood 

Pressure (SBP, mmHg): Normally distributed, mean 

132, SD 18; (4) Total Cholesterol (mg/dL): Normally 

distributed, mean 205, SD 35; (5) HDL Cholesterol 

(mg/dL): Normally distributed, mean 48, SD 12; (6) 

Smoking Status: Binary variable (current 

smoker/not), with a 25% prevalence; (7) History of 

Diabetes: Binary variable, with a 12% prevalence. 

A PRS for coronary artery disease (CAD) was 

simulated for each individual. It was generated from a 

standard normal distribution (mean 0, SD 1) and was 

designed to be an independent predictor of the 

outcome, representing the static genetic contribution 

to risk. A detailed description of the hypothetical SNPs 

and weights used for this simulation is provided in 

Supplementary Table S1. 

To simulate the richness of data from wireless 

health monitoring devices, we generated several 

sophisticated digital biomarkers, including measures 

of central tendency and variability over a simulated 

one-year period: (1) Resting Heart Rate (RHR, bpm): 

Normally distributed, mean 68, SD 8. A slight positive 

correlation was induced with SBP and diabetes status; 

(2) Heart Rate Variability (HRV): Simulated as the root 

mean square of successive differences (RMSSD, ms). 

Normally distributed, mean 45, SD 15. A negative 

correlation was induced with age, SBP, and diabetes 

status; (3) Mean Daily Moderate-to-Vigorous Physical 

Activity (MVPA, minutes/day): Log-normally 

distributed to reflect the typical right-skewed nature of 

activity data, mean 35, SD 20; (4) Variability of RHR 

(RHR_SD, bpm): To capture physiological stability, the 

intra-individual standard deviation of RHR over the 

year was simulated. Normally distributed, mean 5, SD 

1.5. 

The primary outcome was the 10-year risk of a 

Major Adverse Cardiovascular Event (MACE), defined 

as a composite of non-fatal myocardial infarction, non-

fatal stroke, or cardiovascular death. To avoid 

circularity and create a "ground truth," the binary 

MACE outcome for each simulated individual was 

determined probabilistically via a logistic function. The 

log-odds (logit) of experiencing a MACE was a weighted 

linear combination of the generated variables plus a 

random noise term (ε) drawn from a normal 

distribution. 

logit(P(MACE=1)) = β₀ + β₁(Age) + β₂(Sex) + ... + 

βₙ (Variableₙ ) + ε. The coefficients (β) were set to create 

a baseline MACE prevalence of approximately 15% and 

to ensure that each variable contributed to the 

outcome in a pathophysiologically plausible direction 

(higher SBP, higher PRS, and lower HRV increased the 

risk of MACE). The dataset was randomly partitioned 

into a training set (70%) and a hold-out testing set 

(30%). Standardization of continuous features (scaling 

to a mean of 0 and SD of 1) was performed using 

parameters fitted on the training set only to prevent 

data leakage. As the primary clinical benchmark, the 

10-year atherosclerotic cardiovascular disease 

(ASCVD) risk was calculated for each individual using 

the sex- and race-specific ACC/AHA Pooled Cohort 

Equations. The performance of this calculated score 

was evaluated on the test set. 

Three machine learning models were developed: (1) 

Logistic Regression: A well-established linear model 

serving as a baseline for ML performance; (2) Random 
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Forest: An ensemble of decision trees known for its 

robustness and ability to handle interactions; (3) 

XGBoost (Extreme Gradient Boosting): A powerful and 

efficient gradient boosting algorithm that often 

achieves state-of-the-art performance. 

Hyperparameter tuning for Random Forest and 

XGBoost was conducted on the training set using 10-

fold cross-validation with a randomized search 

strategy (RandomizedSearchCV) over a predefined 

search space. The optimized parameters included 

n_estimators, max_depth, learning_rate, and 

subsample. 

Model performance was evaluated on the unseen 

testing set using the following metrics: (1) Area Under 

the Receiver Operating Characteristic Curve (AUC-

ROC): A measure of a model's overall ability to 

discriminate between cases and non-cases; (2) 

Precision: The proportion of predicted positive cases 

that are true positives; (3) Recall (Sensitivity): The 

proportion of actual positive cases that are correctly 

identified; (4) F1-Score: The harmonic mean of 

precision and recall. Confidence intervals (95%) for the 

AUC-ROC were calculated using bootstrapping. 

DeLong’s test was used to compare the AUCs of 

different models. A p-value < 0.05 was considered 

statistically significant. Feature importance for the 

best-performing model was assessed using SHapley 

Additive exPlanations (SHAP) values to ensure 

interpretability. 

 

3. Results and discussion 

The baseline characteristics of the 5,000 simulated 

individuals are presented in Table 1. The cohort had a 

mean age of 57.5 ± 10.2 years and was 50% female. 

The distributions of clinical risk factors and the overall 

10-year MACE risk of 14.8% were consistent with the 

parameters defined in the DGP, reflecting a population 

with a moderate-to-high cardiovascular risk burden. 

The performance of the benchmark PCE score and 

the trained machine learning models on the hold-out 

test set is detailed in Table 2. The standard PCE model 

achieved an AUC-ROC of 0.76, demonstrating fair 

discrimination. All machine learning models trained 

on the fully integrated dataset (traditional factors + 

PRS + digital biomarkers) significantly outperformed 

this clinical benchmark. The XGBoost model 

demonstrated the highest performance across all 

metrics, achieving an outstanding AUC-ROC of 0.92 

(95% CI, 0.90-0.94), with high precision (0.88), recall 

(0.89), and F1-score (0.88). The ROC curves for all 

models are displayed in Figure 1. 

To dissect the contribution of each data modality, 

we evaluated the performance of the best model 

(XGBoost) when trained with different feature sets 

(Table 3). A model trained only on the traditional risk 

factors used in the PCE achieved an AUC-ROC of 0.81. 

Adding the simulated PRS increased the AUC-ROC to 

0.86. A more substantial improvement was seen with 

the addition of the digital biomarkers, which raised the 

AUC-ROC to 0.89. The highest performance was 

achieved only when all three data sources were 

combined, yielding an AUC-ROC of 0.92. This clearly 

demonstrates the synergistic and complementary 

value of each data modality within this idealized 

simulation. 

The SHAP summary plot for the final XGBoost 

model (Figure 2) revealed the relative importance of the 

input features in driving the model's predictions. As 

expected in this simulation, age was the most 

influential predictor. However, the digital biomarkers, 

particularly HRV (RMSSD) and RHR, were ranked as 

the next most important features, surpassing 

traditional risk factors like SBP and total cholesterol. 

The PRS also ranked as a highly important feature, 

underscoring its significant contribution to the 

model's predictive power. 

This in-silico study was conceived and executed as 

a foundational exercise in methodological exploration, 

designed to probe the theoretical frontiers of 

cardiovascular risk prediction. In an era where clinical 

medicine is inundated with novel, high-dimensional 

data streams, the central question is no longer if these 

data are useful, but rather how they can be optimally 

integrated and, most critically, to what quantifiable 

extent they can enhance our predictive capabilities. By 

architecting a transparent, controlled, and 
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reproducible simulation environment, we have 

effectively constructed a digital laboratory. This 

approach allowed us to systematically deconstruct 

and evaluate the potential of a multi-modal risk 

prediction paradigm, liberated from the innumerable 

and often intractable constraints of real-world clinical 

data, such as confounding variables, missingness, and 

measurement error. The findings that have emerged 

from this controlled environment are both striking and 

illuminating. Our results compellingly demonstrate 

that under these idealized conditions, an integrated 

predictive framework, powered by a sophisticated 

machine learning algorithm like XGBoost, can achieve 

a level of risk discrimination that approaches the 

theoretical maximum. This performance not only 

substantially outperforms the current clinical gold 

standard, the ACC/AHA Pooled Cohort Equations 

(PCE) score, but also provides a clear, quantitative 

benchmark for what the future of preventative 

cardiology might hold.12-14  

 

 

 

The profound superiority of the integrated model is 

not merely an artifact of a more complex algorithm but 

is directly attributable to the deep, synergistic value 

unlocked by the fusion of multi-modal data. The 

concept of synergy, in this context, extends beyond 

simple additive improvement. The predictive power of 
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the whole is substantially greater than the sum of its 

parts because the information from one data modality 

fundamentally alters the interpretation and 

contextualizes the risk conferred by another. The 

model learns not just the independent effect of each 

variable, but the complex conditional probabilities and 

interactions between them. This process gives rise to a 

high-fidelity, data-driven phenotype of an individual's 

cardiovascular health, a granular portrait that stands 

in stark contrast to the blunt, categorical labels of 

"hypertensive" or "smoker" that define traditional risk 

assessment.15 

At the base of this integrated model lies the genomic 

bedrock: the polygenic risk score (PRS). In our 

simulation, the inclusion of the PRS provided a 

significant and foundational boost in performance over 

traditional factors alone. This finding is in robust 

alignment with a rapidly expanding body of real-world 

evidence supporting the clinical utility of polygenic 

risk scores in identifying individuals with a high innate 

susceptibility to cardiovascular disease, often in the 

absence of overt traditional risk factors. We can 

conceptualize the PRS as the unchanging canvas upon 

which the dynamic and varied story of an individual's 

life is painted. It represents a static, lifelong 

component of risk, an inherited biological context that 

modulates an individual's response to environmental 

and lifestyle exposures. Its power is particularly 

profound in younger individuals, where traditional 

risk factors have not yet had decades to manifest 

clinically. A high PRS in a 30-year-old, for instance, 

can serve as a potent, early warning signal, justifying 

more intensive counseling and preventative strategies 

long before their cholesterol levels or blood pressure 

readings become ostensibly abnormal. Our 

simulation, by confirming the foundational 

importance of this genomic layer, reinforces the notion 

that any truly comprehensive risk model must begin 

with an understanding of an individual's innate 

predisposition.16,17  

 

 

 

However, while genomics may set the stage, it is the 

dynamic digital biomarkers that narrate the unfolding 

play of an individual's current health status. Perhaps 

the most salient and clinically tantalizing finding of 

this study is the profound predictive impact of these 

real-time physiological data streams. In our 

simulation, the inclusion of sophisticated features 

derived from wearable sensors, such as heart rate 

variability (HRV) and resting heart rate (RHR), 

provided the single largest incremental improvement 

in predictive accuracy. This highlights a critical and 

necessary conceptual shift in our approach to risk 
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assessment—a move away from a static, episodic, 

point-in-time paradigm toward one that is dynamic, 

continuous, and deeply personalized. This is not 

merely a statistical curiosity; it is deeply rooted in 

pathophysiology. 

Reduced HRV, for example, is a well-established 

and powerful indicator of cardiac autonomic 

dysfunction. It reflects an imbalance in the autonomic 

nervous system, with a shift towards the dominance of 

the sympathetic ("fight-or-flight") system over the 

parasympathetic ("rest-and-digest") system. This state 

of chronic sympathetic over-activation is a known and 

critical pathway in the pathogenesis of cardiovascular 

disease, contributing to systemic inflammation, 

endothelial dysfunction, hypertension, and an 

increased propensity for life-threatening arrhythmias. 

Similarly, an elevated resting heart rate is a potent and 

independent predictor of cardiovascular mortality, 

serving as a crude but effective barometer of overall 

cardiac strain and fitness. The ability of our model to 

leverage these subtle, yet powerful, physiological 

signals—as evidenced by their high ranking in the 

SHAP analysis—underscores the immense and largely 

untapped potential of data from consumer-grade 

wearable devices. By capturing a continuous, high-

fidelity stream of an individual's real-time 

physiological status, these biomarkers provide a 

dynamic window into the current state of their health 

that beautifully complements the lifelong, static risk 

encoded by their genomics.18,19  

 

 

Figure 1. ROC curve for 10-year MACE prediction. 

The choice of XGBoost as the top-performing model 

in this simulated contest is also deeply instructive. The 

elegant simplicity of linear models, such as logistic 

regression and the PCE score, comes at the cost of 

being unable to capture the complex, non-linear 

realities of human biology. These models inherently 
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assume that the risk conferred by a given factor is 

additive and consistent across all individuals. For 

instance, they might assume that a 10 mmHg increase 

in systolic blood pressure confers the same quantum 

of additional risk to a 45-year-old marathon runner as 

it does to a 65-year-old diabetic smoker. Biology, 

however, is a system defined by interactions. Tree-

based ensemble methods like XGBoost are specifically 

designed to excel in this landscape. Through an 

iterative process of building and refining a multitude 

of decision trees, XGBoost can autonomously discover 

and model high-order, non-linear relationships 

directly from the data. It can learn, for example, that 

the risk conferred by a high PRS is significantly 

amplified in the presence of low HRV but may be 

attenuated in an individual with consistently high 

levels of physical activity. The pathogenesis of CVD is 

not a simple linear equation; it is a complex, 

interactive system. Our simulation strongly suggests 

that to unlock the full predictive potential of the rich, 

multi-modal health data now at our disposal, we must 

employ models that are capable of learning and 

representing this inherent biological complexity.19,20 

 

 

 

It is imperative to contextualize our highly 

encouraging findings within the significant and 

carefully considered limitations of an in-

silico simulation. The very strength of our study—its 

pristine and controlled environment—is 

simultaneously its most profound weakness when 

considering translation to the messy, unpredictable 

world of clinical practice. First and foremost is the 

primary limitation of simulation itself. The data, while 

thoughtfully generated, remains artificial. The 

performance metrics reported here, particularly the 

exceptional AUC of 0.92, do not reflect the expected 

performance on a real patient population but rather 

demonstrate a theoretical "best-case scenario" under 

mathematically idealized conditions. Therefore, these 

findings are not, and should not be considered, 

generalizable or directly applicable to clinical decision-

making. This study serves as a compass, not a map; it 

points toward a promising direction but does not chart 

the terrain. The simulation-reality gap is substantial. 

Real-world data is plagued by biases; users of 

wearable technology, for instance, often represent a 

healthier, wealthier, and more technologically literate 

segment of the population, which is not representative 
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of the populace most at risk. This selection bias can 

dramatically skew model performance and limit its 

utility in underserved communities. 

Second, our Data Generating Process, while more 

sophisticated than many prior approaches, remains a 

vast simplification of the true, labyrinthine complexity 

of human biology. We modeled a finite and carefully 

selected set of variables and their interactions. The 

true web of causality in the development of CVD is 

infinitely more complex, involving an unmodeled 

universe of factors. These include crucial social 

determinants of health, such as socioeconomic status 

and access to care; environmental exposures, like air 

pollution and noise; critical lifestyle factors, such as 

diet and sleep architecture, which we only crudely 

proxied; and the vast, intricate landscape of the 

proteome, metabolome, and microbiome. Our model is 

only as good as the variables it was trained on. This 

simulation effectively proves the immense value of the 

variables we chose to include, but it makes no claims 

about the vast number of potentially crucial predictors 

that were omitted.

 

Figure 2. SHAP summary plot for the final XGBoost model. 

Third, the simulation assumes perfect, research-

grade data collection. It does not, and cannot, account 

for the substantial data quality challenges inherent in 

real-world digital health monitoring. Real-world 

sensors produce noisy signals and are prone to 

measurement artifacts—a sudden spike in heart rate 
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could signify the onset of atrial fibrillation, or it could 

simply be the result of a bumpy car ride. User 

adherence to wearing devices is often patchy and 

inconsistent, leading to large swathes of missing data 

that must be handled with sophisticated imputation 

techniques. Each of these real-world imperfections 

introduces a layer of noise and uncertainty that would 

inevitably and significantly degrade the performance of 

any predictive model. The 0.92 AUC achieved here 

should be viewed as a theoretical ceiling; the central 

question for future research is determining how far 

below this ceiling real-world performance will 

inevitably lie. 

Finally, this study must be viewed strictly as a 

methodological proof-of-concept. Its primary purpose 

is not to deliver a clinically validated tool, but rather 

to provide a robust, quantitative rationale and a 

hypothesis-generating framework to motivate, justify, 

and guide the design of future, more complex, and 

vastly more expensive real-world research. The path 

from this promising simulation to a validated clinical 

instrument is long and arduous. It will require 

prospective studies with adjudicated outcomes, 

regulatory scrutiny and approval, the development of 

secure and scalable data pipelines, seamless 

integration with electronic health records, and, 

perhaps most importantly, the creation of intuitive 

clinical decision support tools that can translate a 

complex, probabilistic risk score into a clear, 

actionable, and evidence-based recommendation for 

the busy clinician at the point of care. 

The compelling results of this simulation provide a 

strong impetus for future research. The clear next step 

is to validate these findings using large-scale, real-

world prospective cohort data that links genomic, 

clinical, and high-resolution wearable sensor data to 

adjudicated cardiovascular outcomes. Studies 

utilizing resources like the UK Biobank or the NIH All 

of Us program are essential. Furthermore, research is 

needed to develop robust methods for handling the 

data quality issues inherent in real-world sensor data 

and to ensure that these advanced models are fair, 

equitable, and do not exacerbate health disparities 

across different populations. 

 

4. Conclusion 

In conclusion, this comprehensive in-silico 

simulation study provides compelling evidence for the 

substantial theoretical potential of integrating 

genomics and dynamic digital biomarkers through 

advanced machine learning for CVD risk prediction. 

Our work demonstrates, in a controlled environment, 

that such an integrated approach can dramatically 

outperform current clinical standards, primarily by 

leveraging the rich, longitudinal information provided 

by wearable technology. While we strongly caution 

against direct clinical interpretation, this study serves 

as a critical methodological roadmap. It quantifies the 

potential gains available and champions a necessary 

paradigm shift towards a more dynamic, personalized, 

and data-driven future for preventative cardiology. The 

challenge ahead lies in translating this theoretical 

promise into a validated, real-world clinical reality. 
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